
Alternative techniques for cluster labelling on percolation theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 1827

(http://iopscience.iop.org/0305-4470/33/9/308)

Download details:

IP Address: 171.66.16.124

The article was downloaded on 02/06/2010 at 08:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen.33 (2000) 1827–1840. Printed in the UK PII: S0305-4470(00)02772-4

Alternative techniques for cluster labelling on percolation
theory

J Mart́ın-Herrero and J Peón-Ferńandez
Applied Physics Department, Faculty of Sciences, University of Vigo, 36200 Vigo, Spain

E-mail: julio@uvigo.es andjpeon@uvigo.es

Received 17 March 1999, in final form 5 January 2000

Abstract. We propose a new cluster labelling algorithm as a tool for computer-aided simulation
in the field of percolation theory. Due to the use of recursivity, the basic labelling algorithm only
needs a few lines of code, and performs at least as well as the Hoshen–Kopelman algorithm with
the small lattices that can be stored in the computer memory. Additionally, it can be extended
to label the clusters, compute cluster parameters and check for percolation in a single pass over
the lattice. We also detail how to deal with lattice dimensions higher than two or with lattices
without complete connectivity. Huge lattices, which cannot be stored as a whole in the computer’s
memory, require a slight modification that permits the labelling by sublattices. In this case, a cluster
association technique similar to that proposed by Hoshen and Kopelman is necessary. Nevertheless,
the proposed algorithm is capable of labelling lattices of virtually any size, no matter what the
memory capacity of the machine, because it does not require an entire line or hyperplane of the
whole lattice to be in memory. It is only limited by the storage capacity of the devices attached to
the machine. If what is needed is just percolation checking, the storage requirements are very low
and processing times decrease, using the ‘percolation finders’ suggested. Listings of C programs
are available in the online edition.

1. Introduction

As for any other cluster labelling algorithm, to simulate a subcrystal of an infinite crystal
containing two types (A and B) of randomly distributed molecules, anN -dimensional lattice
is generated, assigning to each of its sites one of the types. The sites will form clusters of
connected molecules of the same kind. In order to detect in the generated lattice the existence
of percolation (the same cluster of type A extending from one side of the lattice to the other),
a labelling algorithm is of interest to identify each of the clusters separately, together with
other information of interest, such as the average size, maximum size or spatial structure of
the clusters. This is a necessary step in order to use group renormalization to obtain the
critical exponents for phase transition phenomena (Reynoldset al 1980). One such algorithm
was proposed by Hoshen and Kopelman (1976; HK hereafter) and since then has been used
extensively by the researchers in the field. See, for example, the pioneering book by Stauffer
and Aharony (1994) on percolation theory.

The aim of this paper is to give an answer to the challenge that Gould and Tobochnik
(1996) made in chapter 12 of their bookComputer Simulation Methods. The chapter is a nice
introduction to percolation theory and group renormalization. They deal with cluster labelling

0305-4470/00/091827+14$30.00 © 2000 IOP Publishing Ltd 1827

1828 J Mart́ın-Herrero and J Péon-Ferńandez

in order to characterize crystals, using the well known Hoshen–Kopelman algorithm. Gould
and Tobochnik state, literally,

although the HK algorithm can be shown to be the most efficient cluster labelling
approach to two-dimensional lattices, it is not clear that this approach is the most
efficient in higher dimensions. Can you think of a different method for identifying
the clusters? (Gould and Tobochnik 1988, p 411.)

We have developed a different collection of techniques for cluster labelling. The algorithm we
propose has, at least, the advantage of a greater simplicity in the source code, and, contrasted
with the classic HK algorithm, has proven faster when dealing with lattices small enough to be
stored in the computer’s memory. Nevertheless, due to the great number of implementations,
variations and improvements suffered by this well known algorithm, this need not mean that
the new algorithm will be faster than any version of the HK algorithm. In fact, we encourage
anyone who is working with some version of the HK algorithm to try ours and compare the
performance. However, the aim of this paper is not to establish a detailed comparison with
the HK algorithm, but to offer the research community in percolation theory an alternative
tool that can prove to be useful and more suitable for some tasks than the HK algorithm.
Moreover, the new algorithm offers in a single run over the lattice not only the cluster labels,
but the determination of percolation (in either direction) together with any of many possible
cluster parameters that may be of use, such as dimensions, area, momentum or concentration
measurements, for instance. Such information can be computed using a recent version of the
HK algorithm, too (Hoshenet al 1997).N -dimensional (N > 2) lattices are not a problem,
either, implying only a few more lines of code.

Really big lattices may either not fit in the computer memory or, if they do fit, can
produce a stack overflow error due to the technique being recursive. In these cases it is
possible, as explained below, to modify the algorithm to run using sublattices. This implies
the introduction of a cluster association technique similar to HK’s one, but as little memory
demanding as desired. Working with sublattices as small as necessary permits one to deal
with lattices as huge as allowed by the storage capacity of the computer, no matter what its
memory size or processor speed. What is more, if percolation checking is the only purpose
of the labelling, the labelled lattice does not have to be stored and really huge lattices can be
computed with the ‘percolation finder’ routines (programs 5 and 6). Using them, for instance,
we have generated and checked for percolation anL× L lattice withL = 50 000 (2.5× 109

sites) with a desktop PC (iPentium-II 200 MHz) using less than 3 Mbyte (just storing the
whole lattice would need about 10 Gbyte) of disk space, in less than 3 h. Of course, the greater
the storage capacity, the greater the lattices that can be simulated. The ratio of consumption
of resources versus lattice size (L2) is quite linear with this algorithm, so it is not difficult
to imagine where the limit in lattice size is for a modern desktop PC. We think it is a very
acceptable one.

As in any other algorithm for cluster labelling, first of all, a lattice with the desired
occupation density has to be generated. The approach used is the same as in the HK algorithm:
pseudo-random number generation. By generating a pseudo-random number between 0 and
1 for each of the sites, the site is assigned a−1 if the number is equal to or less than the
occupation density and a 0 if it isnot. Therefore, sites labelled with−1 are the occupied ones
and those with 0 are the empty ones. Sites are filled with molecules in consecutive order.
Because of the randomness of the assigning method, it is probable that the occupation density
obtained will not be exactly the desired one; i.e. the smaller the lattice, the larger the error. If
this is important, it can be useful to select an accuracy bound and to repeat the process until
the occupation density lies within the bounds.

Cluster labelling on percolation theory 1829

Our C programs 1–4, 5.1 and 5.2 are available in, and may be downloaded from, the online
edition (www.iop.org).

2. The basic algorithm: having it easy with small lattices

Once the matrixsitei,j that represents the lattice has been generated, the clusters are labelled
to characterize them and to establish the existence (or not) of percolation. The algorithm
described here is a single-pass method that requires all of the lattice region to be labelled to
be in the computer’s memory. In its simplest form, the algorithm is composed of a few lines
of code in the main program and a small subroutine, as sketched below in pseudocode.

MAIN
setLabel = 0
for all i, j

if sitei,j = −1
add1 to Label
Label Site(i, j)

end of if
end of for

end ofMAIN

LABEL SITE(i, j)
setsitei,j = Label
for each neighboursitem,n

if sitem,n = −1 doLabel Site(m,n)
end of for

end ofLABEL SITE

It goes sequentially over all the sites of the lattice until it finds an occupied one. Then
it calls the labelling routine (LABELSITE) which assigns the current label to the site and
searches for occupied sites in the neighbourhood. If it finds one, it calls itself to label the new
site with the same label and to search for its neighbours. If not, the routine goes on searching
all the neighbouring sites. If there are no occupied sites in the neighbourhood, the routine
reaches the end and goes back to the code that called it. If it was the routine itself, running
for another site, it will continue searching the rest of the neighbours of that site. If it was
called from the main code (the first site of the cluster), it means that all the occupied sites
connected with it, i.e. the whole cluster, have been labelled. Then it returns to the main code
in search of the next occupied site. Once found, it increases the label number and begins the
labelling of the new cluster. Each time that LABELSITE is called from the main code for
one occupied (still not labelled) site, the whole cluster to which the site pertains is labelled
with the contents of theLabel variable. ThenLabel is increased and the code looks for the
next occupied site. There is no risk of labelling a site belonging to an already labelled cluster,
because the algorithm only labels sites marked with−1. At the end of the process, all the
occupied sites will have a numerical label indicating their cluster, and all the empty ones will
be labelled with 0. Program 1 is a short C program that does this (a direct translation of the
pseudocode from above). It uses the routines in program 2 to generate and store the lattice.
As can be checked, the time used for lattice generation is far greater than for labelling.

To determine the existence or not of percolation, the simplest way is to search the top and
bottom rows of the lattice, looking for sites having the same cluster label in both of the rows.
This would mean that the cluster extends from one side of the lattice to the other (spanning
cluster). Nevertheless, this search is not necessary if the algorithm is enhanced to obtain the

1830 J Mart́ın-Herrero and J Péon-Ferńandez

average and maximum cluster dimensions. If so, longitudinal percolation exists whenever
the maximum cluster longitudinal size is equal to the lattice longitudinal dimension, and the
same in the other directions. Therefore, with the extended algorithm, percolation detection
is automatic. The new version is as shown below (see program 3 for a ‘ready to use’ C
implementation).

MAIN
setLabel, Lonmax, Transvmax= 0
setLonave, Transvave= 0
for all i, j

if sitei,j = −1
add1 to Label
setLon, Transv = 0
setimin , imax= i
setjmin , jmax= j
Label Site (i, j)
setTransv = imax− imin + 1
if Transvmax < Transv setTransvmax= Transv
addTransv to Transvave

setLon = jmax− jmin + 1
if Lonmax < Lon setLonmax= Lon
addLon to Lonave

end of if
end of for
divideLonave, Transvave by Label

end ofMAIN

LABEL SITE(i, j)
setsitei,j = Label
if imin > i setimin = i
if imax < i setimax= i
if jmin > j setjmin = j
if jmax < j setjmax= j
for each neighboursitem,n

if sitem,n = −1 doLabel Site(m,n)
end of for

end ofLABEL SITE

It has grown a bit in length but not too much in complexity. Once run, it offers inLonmax

andTransvmax the maximum cluster length and width, and the average values inLonave and
Transvave. Just storing in imax, imin, jmax and jmin the furthest positions that the subroutine
reaches during the labelling of each single cluster does it. Thus it obtains the length and
width of the cluster. If necessary, together with the cluster label its width, length or any other
cluster structure related parameter that may be useful can be stored, such as momentum, area
(number of sites belonging to it), dispersion, concentration measurements, etc, computing them
in a similar way. As mentioned, with this version of the algorithm, in a single line of code
the program can detect the existence of longitudinal percolation, just by comparingLonmax

with the lattice longitudinal dimension, and usingTransvmax for the transverse direction. The
spanning clusters in any direction can be identified by means of their dimensions, if stored.

What is more, if the purpose of the labelling is just to detect the existence or not of
longitudinal (transverse) percolation, i.e. a ‘percolation finder’, the code only needs to run
for the first row (column) of the lattice, and is stopped as soon asj (i) is equal to the lattice
longitudinal (transverse) dimension, i.e. as soon as a bottom site is reached to be labelled,

Cluster labelling on percolation theory 1831

without the need for any other local variable. This can be seen as pouring water into the
lattice through the holes (clusters) in the upper side (first row) and just waiting to see whether
some appears at the bottom. It is not necessary to label every cluster in the lattice, just those
starting at the first row, and even this process is stopped as soon as the bottom (last row) is
reached. Also, the ‘water drops’ are programmed to ‘feel’ the gravity and tend to go downwards
whenever it is possible. This is a very fast method for percolation detection, much faster than
the HK algorithm, merely because it really does a much smaller job (remember that it does
not label the whole lattice, it just checks for percolation). One such ‘percolation finder’ in
C is program 4. With this program, percolation checking time is incomparably less than the
lattice generation time. We have not tested program 4 versus the HK algorithm because the
HK labels the whole lattice prior to the percolation checking and therefore the time consumed
is not directly comparable. If what is needed is just percolation checking (in lattices that can
be stored in memory as a whole), there should be no doubt regarding its performance and
simplicity.

Working with higher-order lattices is easy. It only implies using many lattice dimension
indices,i, j, k, . . . as the order of the lattice, and to increase the neighbourhood search code in
the subroutine to include the new possible connections. In a similar way, in a three-dimensional
matrix, for instance, the neighbourhood does not necessarily have to be made of all six sites
next to the site, as in a cubic lattice. A triangular or any other connection pattern can be defined
and implemented easily, just by limiting the search directions, or adding new ones. As the
lattice order increases, the search for percolation and the computation of cluster dimensions
have to be adapted accordingly.

We have run some simple tests using program 3 (labelling the whole lattice and percolation
detection at the same time) versus one of the many available implementations of the HK
algorithm (Stauffer and Aharony 1994). We used the same lattice generation routine for both,
which is detailed in C code in program 2. Each method was run 100 times for 100 lattices
with densities of occupation of 0.15, 0.35, 0.70 and 0.90, and three different sizes. The time
elapsed for the generation and labelling of the 100 lattices was averaged along the 100 runs for
each density and size. The results can be seen in table 1 (two-dimensional lattices) and table 2
(three-dimensional lattices). There is a column for each occupation density and one row for
each lattice size.

Table 1. Time consumed by the HK algorithm and that proposed by the authors in generating and
labelling 100 2D lattices with differentp (top) and size (left). The time consumed by the authors’
algorithm is shown in parentheses.

0.15 0.35 0.70 0.90

50× 50 3 (1) 3 (1) 3 (1) 2 (1)
100× 100 7 (4) 7 (4) 6 (4) 6 (4)
500× 500 138 (92) 150 (94) 121 (100) 115 (102)

Table 2. Time consumed by the HK algorithm and that proposed by the authors in generating and
labelling 100 3D lattices with differentp (top) and size (left). The time consumed by the authors’
algorithm is in parentheses.

0.15 0.35 0.70 0.90

21× 21× 21 5 (3) 4 (3) 4 (4) 5 (4)
25× 25× 25 8 (5) 8 (5) 7 (6) 7 (7)
41× 41× 41 33 (25) 36 (25) 32 (27) 32 (28)

1832 J Mart́ın-Herrero and J Péon-Ferńandez

The average time consumed for the generation and labelling of 100 lattices is shown in
seconds, running on a PC with an iPentium-II 200 MHz processor and 96 Mbyte of RAM. The
time consumed by the HK algorithm is shown and within parentheses is that corresponding to
our method. It can be seen that the performance of the HK algorithm seems to decrease around
p = 0.35, while the performance of the proposed method decreases with increasing density
of occupation, as should be expected due to there being more sites to label. If we fix our
attention on the bigger lattices, we find an average time of the proposed method of 75% of the
HK algorithm time for two-dimensional lattices of size 1002 and 79% for three-dimensional
lattices of size 413. Additional tests, on the same computer, with 100 runs for 100 lattices each,
of size 10002, p = 0.45, give 537 s (i.e. 5.37 s/lattice) for the HK algorithm and 384 s (3.84 s,
71.5%) for the proposed algorithm. Similar tests for three-dimensional lattices of size 1003,
p = 0.45, have given 837 s (i.e. 8.37 s/lattice) for HK and 386 s (3.86 s, 46%) for the proposed
method. In addition, the proposed method computed simultaneously the cluster labels, the
average and maximum cluster size in every direction, and the existence or not of percolation
in every direction.

Nevertheless, these results have to be handled with care because, as mentioned above,
many different implementations of the HK algorithm exist and it could happen that they might
give significantly different results. However, at least, they should serve to support the new
method as a valid alternative, not only for its simplicity (see programs 2 and 3) but for its
performance too (not to mention the ‘percolation finder’, program 4). However, the reader
must not forget that these results are for the basic version, which requires the whole lattice to
be in the computer memory. Both algorithms were tested working with the whole lattice into
the computer memory. The HK algorithm needed additional memory space for the index-of-
indices array, which, without the use of recycling techniques, caused some problems for the
machine when we tried bigger lattices. With the proposed algorithm similar problems arose,
regarding memory capacity, specifically the stack size for recursion, but at higher lattice sizes
than with the HK algorithm (usually most compilers permit one to adjust the stack size).

It is easy to see that one important subject regarding this kind of labelling algorithm is the
memory stack. It is there where the computer stores the program counter and the local and status
variables each time a subroutine is called. Therefore, the number of local variables should be
low, on account of possible problems of stack overflow. It is easy to do some calculations: take
the case of a two-dimensional square lattice of size 30002; one can easily expect, depending
on the occupation density, clusters of up to 9× 106 sites (with a density of occupation equal
to 1, not a particularly useful study case, but significant as an upper limit to our calculations).
The labelling of such a cluster would involve a recursive call to the subroutine no more than
9× 106 times (in general, the number of accumulated routine calls would be significantly less
than the number of sites in the cluster. The upper limit, equality, is only reached in square
clusters and the like). Each routine call has to store in the stack the program counter (a memory
address) and some local variables (at least two integers, plus status registers). They remain
there until the routine ends its code. Therefore, to prevent a stack overflow error when using
the basic algorithm with a 30002 lattice, we would need a stack of greater than 100 Mbyte.
The alternative is to use the extended version described below.

3. The extended algorithm: towards bigger lattices

Due to the stack being a part of the RAM memory, which has to store the lattice itself, when
dealing with big lattices and/or high occupation densities it is necessary to label the lattice
using sublattices, which implies a modification of the algorithm. First, the lattice must be
divided into overlapping sublattices, with an overlap extension of just one site along each

Cluster labelling on percolation theory 1833

border. Then the sublattices are sequentially labelled with a modified version of the algorithm.
Subdivisions and disk have already been used (Rapaport 1985).

The way it works is essentially the same. There is just a slight difference if it finds a
site with a label which is less than the label value with which the current sublattice started.
This can only happen on two of the borders of the sublattice, and would mean that the site
belongs to a cluster that has already been partially labelled in a previous sublattice. Therefore,
the rest of the connected sites have to be labelled with the old label. However, here we can
face the same kind of problem as when labelling with the HK algorithm, i.e. the cluster labels
assigned in previous sublattices to what seemed to be different clusters may be wrong if they
belong to a unique cluster spanning several sublattices. Thus it is necessary to include some
way of associating clusters which really are the same but have different labels. For the sake of
speed, an array of associated indices can be used, much the same as used in the HK algorithm.
However, it has the disadvantage of underusing a lot of array positions, those of the cluster
labels that are not associated with any other. Nevertheless, when computing speed prevails
over memory usage, this can be a useful method. In pseudocode:

MAIN
setLabel = 1
for all sublattice

setLabelini = Label
for all i, j in sublattice

if (i = 0 or j = 0) and (0< sitei,j < Labelini)
setLabelreal = sitei,j

Label Site(i, j)
else ifsitei,j = −1

setLabelreal = Label
add1 to Label
Label Site(i, j)

end of if
end of for

end of for
ResetLabels()

end ofMAIN

LABEL SITE(i, j)
setsitei,j = Labelreal

for each neighboursitem,n

if sitem,n = −1 doLabel Site(m,n)
else ifsitem,n > 0 and<> Labelreal do

AssociateLabels(sitem,n, Labelreal)
Label Site(m,n)

end of if
end of for

end ofLABEL SITE

ASSOCIATE LABELS(a, b)
if a < b do Swap(a, b)
if Assoc[a] <> 0

if Assoc[a] = b do Exit
elseAssociateLabels (Assoc[a], b)

else setAssoc[a] = b
end ofASSOCIATE LABELS

1834 J Mart́ın-Herrero and J Péon-Ferńandez

RESET LABELS()
setLabel = 1
for all a

if Assoc[a] = 0 do
setAssoc[a] = Label
add1 to Label

else setAssoc[a] = Assoc[Assoc[a]]
end of for

end ofRESET LABELS

After running RESETLABELS() at the end of the labelling routines, inAssoc[Label] we
will have for each label a real label which identifies all the associated clusters as only one.
There will only be one label for each cluster and all the labels will be consecutive, starting
from 1. The association process can be seen in table 3. In table 4 we show the resetting
process. ASSOCIATELABELS and RESETLABELS are very efficient routines, and both
can be used to deal with the array of indices in the HK algorithm, too.

Table 3. Working method of ASSOCIATELABELS(a, b). If the label to associate,a, is already
associated, it tries to associate the target,b, with the label associated with the first,A[a]. And goes
on trying until it finds one not yet associated. It always associates the lesser to the greater, to afford
computation time in RESETLABELS() and to prevent endless loops.

Array position

1 2 3 4 5 6 7 8 9 10 Action

Array contents
0 0 0 0 0 0 0 0 0 0 Starting state.
0 0 2 0 0 0 0 0 0 0 Associate(3, 2)
0 0 2 0 2 0 0 0 0 0 Associate(5, 2)
0 1 2 0 2 0 0 0 0 0 Associate(1, 3)→ (3, 1)→ (2, 1)
0 1 2 0 2 0 0 4 0 0 Associate(8, 4)
0 1 2 0 2 0 5 4 0 0 Associate(7, 5)
0 1 2 2 2 0 5 4 0 0 Associate(4, 2)
3 1 2 2 2 0 5 4 0 0 Associate(8, 3)→ (4, 3)→ (2, 3)→ (3, 2)→ no action
0 1 2 2 2 0 5 4 0 0 Associate(5, 1)→ (2, 1)→ no action

The sublattices can be, for example, blocks of 100× 100 sites, the first from(0, 0) to
(100, 100), the second from(100, 0) to (200, 100), and so on, or whatever value is the best
suited for the characteristics of the computer, never forgetting the overlap between adjacent
sublattices. A good way to find an upper limit for the blocking factor (sublattice size) is to
use the worst case of stack use (one cluster over the whole sublattice) to know the memory
required. It would be the size of the sublattice plus the maximum stack size plus a security
margin for the other variables and operating system requirements. The maximum stack size
needed for the recursion can be estimated as the sublattice size times the size of a memory
address (program counter) plus the lattice dimension times the size of an integer (site position).

This version permits one to have in memory just one sublattice at a time, while the entire
lattice remains in a massive storage device. Thus the computer memory is not a limit for the
size of the lattice. This is only limited by the size of the massive storage device(s) the computer
has access to. With a sublattice size as mentioned above of 1012, for instance, it would require
only about 240 Kbyte of RAM memory (taking 32 bits per label), and there would be no limit in
the number of sublattices, permitting one to reach virtually infinite dimension lattice, because
the size of the sublattices to use does not depend on the lattice size. In that way this is an
algorithm which is not very demanding for small memory machines but is still fast and very

Cluster labelling on percolation theory 1835

Table 4. Working method of RESETLABELS(). If the current label,a, has any associate,b, it will
be less than the current label,a (because of ASSOCIATELABEL) and thus it will have already
correctly associated a label,A[b], so it is directly usable for the current label,A[a] = A[b]. If not,
use the value stored inLabel, A[a] = Label, to ensure correlativity.

Array position

1 2 3 4 5 6 7 8 9 10 Action

Array contents
0 1 2 2 2 0 5 4 7 6 Starting state (Label := 1)
1 1 2 2 2 0 5 4 7 6 A[1] = 0A[1] := Label= 1 (Label := 2)
1 1 2 2 2 0 5 4 7 6 A[2] <> 0→ A[2] := A[A[2] = 2] = 1
1 1 1 2 2 0 5 4 7 6 A[3] <> 0→ A[3] := A[A[3] = 2] = 1
1 1 1 1 2 0 5 4 7 6 A[4] <> 0→ A[4] := A[A[4] = 2] = 1
1 1 1 1 1 0 5 4 7 6 A[5] <> 0→ A[5] := A[A[5] = 2] = 1
1 1 1 1 1 2 5 4 7 6 A[6] = 0→ A[6] := Label= 2 (Label := 3)
1 1 1 1 1 2 1 4 7 6 A[7] <> 0→ A[7] := A[A[7] = 5] = 1
1 1 1 1 1 2 1 1 7 6 A[8] <> 0→ A[8] := A[A[8] = 4] = 1
1 1 1 1 1 2 1 1 1 6 A[9] <> 0→ A[9] := A[A[9] = 7] = 1
1 1 1 1 1 2 1 1 1 2 A[10] <> 0→ A[10] := A[A[10] = 6] = 2

simple. With respect to storage capacity, if again only a ‘percolation finder’ is needed, only
one row of the lattice would have to be stored at a time: the last row of every sublattice, to be
read at the time of labelling the adjacent sublattice. It would not be necessary to store the last
column of each sublattice because subsequent sublattices can be labelled consecutively.

If more than a ‘percolation finder’ is wanted, and therefore the whole sublattices have to
be stored, it is advisable to store them upside down or to label the lattice starting from bottom
to top, just to make it possible that the unique row that has to be read from each sublattice for
the labelling of its adjacent sublattice is the first row in the file, which improves the reading
speed. However, for percolation detection in huge lattices, it would suffice if there were room
enough in the storage devices for one row of the lattice (to be used only everyn rows,n being
the number of rows in a sublattice), a list of the labels used in the first row of the lattice, another
one for the labels in the last row of the lattice, and the array of associated labels (Assoc[Label])
to look for coincidences in both rows.

If we are dealing with very big lattices, we face the problem of a very big array of
association of labels. Let us take the case of a 2 000 0002 lattice. We would only need (32
bits per site) 8 Mbyte for the only row to store, and 4 Mbyte (106 different clusters as the
maximum in a row) for each list of labels (first and last lattice rows). This is 16 Mbyte of
storage capacity for a 2 000 0002 lattice, no matter how much (or how little) RAM memory:
the smaller the memory, the smaller the sublattices. However, there is an array of associations:
we should expect an upper limit (reachable only for very low occupation densities) for the
number of labels of about the occupation density times the size of the lattice. So we should
need an association array of about 4× 22 × 106 × p Mbyte. This is a lot of storage
capacity. That is why it is necessary to think about some other way to manage the cluster
associations.

4. One last modification: huge lattices within reach

The modification we are going to introduce is another way of managing the association of
clusters between sublattices. The main problem withAssoc[Label] is the necessity of having

1836 J Mart́ın-Herrero and J Péon-Ferńandez

an array index for every cluster label, whether it is associated with any other or not. If we think
about the worst possible case, the maximum number of clusters we can have in a sublattice
happens when the sublattice is similar to a chessboard, that is, one-half of the total number
of sites in the sublattice. Therefore, in the whole lattice, we would have as many possible
clusters as the number of sublattices times one-half the number of sites per sublattice, i.e.
one-half the size of the sublattice. That would be 1012 possible clusters for a lattice of size
of 2 000 0002. If we now consider only those clusters which can be associated with others,
i.e. only the maximum possible number of associations between clusters which we can find,
we find that we can only have cluster associations on two of the edges of the sublattices, and
as many different clusters as we could find there, that is (again considering ‘chessboard-like’
sublattices) half the number of sites in one edge plus half the number of sites on the other.
In square lattices of sizeL2 this would be equal toL maximum possible associations per
sublattice. If we again take the 2 000 0002 lattice, and divide it into 2000× 2000 sublattices
of size 10002, we would have an (unreachable) maximum number of associations of 4× 109.
That is, we would be using only one of every 250 positions inAssoc[Label]. If we were to use
200× 200 sublattices of size 10 0002, then the array usage would be only one of every 2500
positions in the array, and it would be enough with 1.6 Gbyte to store the associations for a
2 000 0002 lattice (far enough, because this upper limit is really high!).

Therefore, the necessity for some list of associations where only the clusters associated
with others occupy memory is obvious. The solution is a trade-off of storage capacity savings
in exchange for processing speed. Two arrays,A[c] andB[c], will be used to store the labels
of associated clusters. Two labels stored at the same position inA[c] and B[c] (samec)
will be associated. Labels inA[c] will always be greater than the corresponding labels in
B[c]. With this strategy, the rest of the algorithm remaining the same, it is enough to change
ASSOCIATELABELS and RESETLABELS for those that follow.

ASSOCIATE LABELS(a, b)
if a < b do Swap(a, b)
setc = 0
while A[c] <> a andc < cmax do add1 to c
if A[c] = a

if B[c] = b do Exit
elseAssociateLabels (B[c], b)

else
setA[c] = a
setB[c] = b
add1 to cmax

end of if
end ofASSOCIATE LABELS

RESET LABELS()
sortA[c], B[c] usingA[c]
for all c < cmax

search ford < c such thatA[d] = B[c]
if exists setB[c] = B[d]

end of for
end ofRESET LABELS

The number of associations stored inA[c] andB[c] is stored incmax. To improve the
speed in RESETLABELS when dealing with big values ofcmax, A[c] andB[c] are sorted
using some efficient sorting algorithm (such as Quicksort or Heapsort, we recommend the
latter due to memory savings. See, for example, the masterpiece by Presset al (1992)).

Cluster labelling on percolation theory 1837

Table 5. Working method of ASSOCIATELABELS(a, b). If the label to associate,a, is already
associated, it tries to associate the target,b, to the label associated with the first,A[c]. It goes on
trying until it finds one not yet associated. It always associates the lesser to the greater, to afford
computation time in RESETLABELS() and to prevent endless loops.

c 0 1 2 3 4 5 6 7 8 9 Action

A 0 0 0 0 0 0 0 0 0 0 Starting state
B 0 0 0 0 0 0 0 0 0 0

A 3 0 0 0 0 0 0 0 0 0 Associate(3, 2) (cmax= 0)
B 2 0 0 0 0 0 0 0 0 0

A 3 5 0 0 0 0 0 0 0 0 Associate(5, 2) (cmax= 1)
B 2 2 0 0 0 0 0 0 0 0

A 3 5 2 0 0 0 0 0 0 0 Associate(1, 3)→ (3, 1)→ (2, 1) (cmax= 2)
B 2 2 1 0 0 0 0 0 0 0

A 3 5 2 4 0 0 0 0 0 0 Associate(4, 2) (cmax= 3)
B 2 2 1 2 0 0 0 0 0 0

Table 6. Working method of RESETLABELS(). If the label associated,b, to the current label,a,
already has an associate, it will be less than the current label,a (because of ASSOCIATELABEL
and the previous sorting ofA andB) and thus it will existd < c so thatB[d] is the correct label,
B[c], for a. If not, B[c] is the minimum of the labels associated withA[c], therefore remains
untouched, and will be used for the rest of the labels associated withA[c] in due time.

c 0 1 2 3 4 5 6 7 8 9 Action

A 3 5 2 4 8 9 0 0 0 0 Starting state (cmax= 6)
B 2 2 1 2 4 6 0 0 0 0
A 2 3 4 5 8 9 0 0 0 0 Sort
B 1 2 2 2 4 6 0 0 0 0
A 2 3 4 5 8 9 0 0 0 0 c = 0 (there is nod < c)
B 1 2 2 2 4 6 0 0 0 0

A 2 3 4 5 8 9 0 0 0 0 c = 1 (d = 0)
B 1 1 2 2 4 6 0 0 0 0

A 2 3 4 5 8 9 0 0 0 0 c = 2 (d = 0)
B 1 1 1 2 4 6 0 0 0 0

A 2 3 4 5 8 9 0 0 0 0 c = 3 (d = 0)
B 1 1 1 1 4 6 0 0 0 0

A 2 3 4 5 8 9 0 0 0 0 c = 4 (d = 2)
B 1 1 1 1 1 6 0 0 0 0

A 2 3 4 5 7 9 0 0 0 0 c = 5 (there is nod < c)
B 1 1 1 1 1 6 0 0 0 0

Both are sorted depending on the contents ofA[c]. The recommended searching strategy
for d in RESETLABELS is to test recursively the midpoint of the adequate side of the
segment to scan (see program 5.2). The way these routines work can be seen in table 5
and 6.

With these versions of ASSOCIATELABELS and RESETLABELS, there is no problem
at all in using a different pair of arrays,A[c] andB[c], for each sublattice. Thus, only a
maximum array sizeL (far less would generally suffice) would be needed for a sublattice
of sizeL2, to avoid out of memory errors during the labelling process. After each sublattice
processing, both arrays can be dumped to a file. At the end of the last sublattice, it would suffice

1838 J Mart́ın-Herrero and J Péon-Ferńandez

to read that file using ASSOCIATELABELS (to avoid duplicates and make the due connections
between separate sublattices) and then processing the entire arrays with RESETLABELS.

Programs 5.1 and 5.2 use these techniques to check for percolation in big lattices.
Program 5.1 performs the labelling and program 5.2 does the resetting and relabelling of
the stored rows. We do it with two separate programs for better memory management
(otherwise, we would have to reserve more memory for the arraysA andB during the labelling,
and therefore we would have to use smaller sublattices). The alternative is to use dynamic
memory allocation to increase the memory allocated for the arraysA andB and to free the
memory allocated for the sublattice prior to the resetting and relabelling phase. However, these
techniques, really advisable, could lead to a loss in clarity and therefore have not been used in
any program in this paper.

The sublattices are generated just before their labelling, and only the first row is dumped
to disk after the labelling. As the lattice is processed from bottom to top, it is only necessary
to store the first row for each sublattice, and only until the next one above it is processed.
The last row of the bottom sublattices is stored, too, to perform the percolation checking (of
course it is possible and easy to adapt the code in programs 5.1 and 5.2 to store the whole
sublattices, if the whole labelled lattice is needed, but it would require much more disk space).
The association arrays,A[c] andB[c], of each sublattice are appended to the file ‘assoc.txt’.
When the labelling of all the lattices is finished, program 5.2 is used to read the file ‘assoc.txt’
and to reset the associations as mentioned above. Then the last row of the lattice and the first
row of the top sublattices (top row of the lattice) are relabelled according to the resulting arrays
of associations. To finish, it just remains to do a half-minute test to search for coincidences
between both rows (not included in program 5.2). For clarity and the editor’s economy,
program 5.2 uses a very short but very inefficient sorting routine. It is strongly recommended
to change it to HeapSort if really big association arrays are going to be processed. The results
that follow were all obtained using programs 5.1 and 5.2 as they are, without any of the
suggested modifications.

With those ‘percolation finders’ 100 lattices of size 50002, using 10×10 sublattices of size
5002, with p = 0.45, have been simulated on the same computer as above. The test averaged
102 s per lattice (the coincidence check between rows using a non-optimized routine took less
than 1 s) and needed on average 108 Kbyte of disk space. Testing 10 lattices of size 20 0002

(using 20×20 sublattices of size 10002),p = 0.45, averaged 1638 s (about 28 min) per lattice,
with a mean disk usage of 823 Kbyte. And lastly, using the same desktop PC, generation and
percolation checking of one lattice of size 50 0002 (using 25× 25 sublattices of size 20002),
p = 0.45, took 10 321 s (2 h and 52 min) and 2.67 Mbyte of disk space. The detailed results
can be seen in table 7.

In table 7 two additional columns have been included that deserve further explanation.
The factors that lead from each variable in the previous column to the next have been specified.
Thus we can have a hint about the algorithm’s performance linearity with respect to lattice
characteristics. We can see that the total computing time increases linearly with the lattice size
(at least as far as the generation and labelling time being the greatest part of it). Disk usage
grows linearly with the number of associations, which itself grows linearly with the relation
lattice size factor to sublattice length factor (16

2 and6
2, respectively), accordingly with what was

mentioned above when estimating the number of possible associations. This holds whenever
disk usage is dominated by the associations file. Obviously, for the first and last rows disk
usage varies linearly with the row size (×4 and×2.5, respectively). Association resetting time
is the only parameter that does not behave linearly due to the nonlinearity of the techniques
involved. Lastly, the density of occupation must not be forgotten. All results in table 7 refer
to p = 0.45.

Cluster labelling on percolation theory 1839

Table 7. Testing programs 5.1 and 5.2, the ‘percolation finders’ for big lattices.

Lattice size (sites) 2.5× 106 ×16 4× 108 ×6.25 2.5× 109

Number of sublattices 10× 10 ×4 20× 20 ×3.1 25× 25
Sublattice length 500 ×2 1 000 ×2 2 000

Total time (s) 102 ×16 1 638 ×6.3 10 321

Generation and labelling (s) 99 ×16 1 578 ×6.2 9 767
Associations resetting (s) 2 ×28 57 ×9.7 550
Rows relabelling (s) 1 3 4

Total disk usage (Kb) 108 ×8 823 ×3.2 2 670

Associations file (Kb) 67 ×10 653 ×3.4 2 190
First and last row (Kb) 41 ×4 170 ×2.9 494

Number of associations 4434 ×8 37 198 ×3 114 865

Therefore, it is easy to use some tests with medium-sized lattices to predict where the
limit for huge lattice simulations is using a given machine, and then proceed with any desired
lattice within that machine’s reach.

One last word about these results. For the 2500× 106 lattice, about 222× 106 labels
were needed. Of those, only 114 865 were associated (bad ones, in terms of the HK algorithm)
to any other. This represents about one associated label out of every 2000 labels, i.e. the
0.0005%.

5. One last remark

As can be concluded from what has been said and seen, simulating much bigger lattices (could
we call them huge lattices?) in search of percolation is possible using just a desktop PC with
enough free disk space and a normal amount of RAM, in reasonable lapses of time (not to
mention using more powerful machines: exactly the same test as in the previous section, with
the 50 0002 lattice, took only 25 min on a desktop iPentium III 450 MHz PC). We are not
saying that this cannot be achieved (with such modest hardware requirements) with the HK
algorithm, but there are several things to consider: first, it is probable that the labelling of
every sublattice will be faster with the proposed algorithm than with the HK. Secondly, there
is no lower limit in the sublattice size, so there are no minimum requirements concerning the
computer’s memory. Thirdly, the number of cluster associations (bad labels, in HK terms) will
always be much less with the proposed algorithm than with the HK (a mere question of scale:
the HK algorithm accumulates all the possible associations due to the entire range of sublattice
sizes; the proposed algorithm only accounts for the associations due to one chosen sublattice
size. Our algorithm could be thought of as a modified HK algorithm running for sublattices
instead lattice sites).

Still, again the authors want to remark that their intention is to open a new door for those
engaged in computer-aided simulation in the field of percolation theory, and contribute to
making complex simulations easier and more accessible to those who do not have expensive
hardware at their disposal. This different approach to cluster labelling tries to be another tool
in the hand of researchers. Now they have the last word about its opportunity, utility and
possibilities for the future.

1840 J Mart́ın-Herrero and J Péon-Ferńandez

References

Gould H and Tobochnik S 1996An Introduction to Computer Simulation Methods: Applications to Physical Systems
vol 2, 2nd edn (New York: Addison-Wesley)

Hoshen J, Berry M W and Minser K S 1997 Percolation and cluster structure parameters: the enhanced Hoshen–
Kopelman algorithmPhys. Rev.E 561455

Hoshen J and Kopelman R 1976 Percolation and cluster distribution. Cluster multiple labelling technique and critical
concentration algorithmPhys. Rev.B 143438

Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992Numerical Recipes in C2nd edn (Cambridge:
Cambridge University Press) pp 332–8

Rapaport D C 1985J. Phys. A: Math. Gen.18L175
Reynolds D J, Stanley H E and Klein W 1980 Large cell Monte Carlo renormalization group for percolationPhys.

Rev.B 211223
Stauffer D and Aharony A 1994Introduction to Percolation Theory(London: Taylor and Francis) A FORTRAN

implementation of the H-K algorithm is given in the appendix

